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Abstract 

The diffraction profile for a small crystallite has been 
obtained as the orientational average of the diffraction 
intensity given by Ino & Minami [Acta Cryst. (1979), 
A35, 163-170]. The formula obtained is a type of 
Debye interference function modified by a function 
7~-(r) (the self-convolution of a crystal shape function) 
and is expressed as a sum over all the atomic distance 
vectors in the crystal structure. Since the set of the 
vectors has Laue symmetry (the order of the group: 
L), the summation can be simplified to a sum over a 
reduced range corresponding to 1/L of the original 
range, while the ~P(r) is changed to ~3(r) = ~ = ,  
~ P ( R p r ) / ( L V )  (Vt: volume of the crystal; R , , . . . , R r :  
element of Laue symmetry group). Once the ~3 function 
is determined, the profile for a complicated crystal of 
any size and any crystal system can be systematically 
and efficiently calculated. 

Introduction 

The X-ray intensity formula for a powder specimen 
composed of very small crystallites can be given by the 
interference function 

I(b)  = ~ Y. f~(b)fj(b)jo(2nbru) , (1) 
i j 

where jo(x) = sin(x)/x,  b = (2/2)sin0, 2 is the X-ray 
wavelength, 0 is the scattering angle, f~ and fj  are the 
atomic scattering factors of the ith andjth atoms in the 
crystallite, and r u is the atomic distance between them. 
The summation is to be taken over all atoms in the 
crystallite. For monatomic substances, equation (1) 
reduces to 

I(b) =f2(b) Y A(r)jo(2ruSr), (2) 
r 

where A (r) is the frequency of occurrence of an atomic 
distance r and the summation is to be taken over all 
possible r. 
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For nearly spherical crystallites (diameter D) of a 
monatomic face-centered cubic structure, Germer & 
White (1941) calculated the intensity profile using 
A(r)  - Nn(r )e(r /D)  (N: total number of atoms), 
r = a(m/2)  ~/2 (m: positive integer; a: lattice constant), 
e(x) = 1 - (~)x + (½)x 3, where n(r) is the number of 
atoms at a distance r from any particular atom in an 
infinite f.c.c, crystal. For simple monatomic parallele- 
piped crystallites with edges Nxlax I, Nylayl, Nzla~l 
(Nx, Ny, Nz: integers) parallel to the crystal axes a~,ay, a z, 
James (1948) derived 

A(r)  = ( N  x -  Imxl)(Ny-Imyl)(Nz--tmzl),  

r =  Im xa  x + m ray + m zazl, 

where m~,my, m z are integers from - ( N  x - 1), 
- - ( N y -  1),--(N z -- 1) to ( N  x -- 1), ( N y -  1), ( N  z -- 1) 
respectively. 

For a monatomic b.c.c, crystal of cubic shape with 
the cube edges parallel to the crystal axes, Morozumi 
& Ritter (1953) classified the atomic distance r into 
three kinds and gave A(r)'s for each kind of r. 
Intensities from cubic diamond crystallites containing 
27 and 1000 unit cells were computed by Tiensuu, 
Ergun & Alexander (1964), although A(r)  was not 
well defined. Ergun (1970) calculated the intensity for a 
spherical diamond crystallite using the function 
A(r)  = Nn(r)e(r /D),  where r = a ( p  2 + q2 + S2)1/2/4 

(p,q,s: integers), n(r) is the number of like distances 
from any particular atom in an infinite diamond 
lattice, and e(r/D) is the same function as that derived 
by Germer & White. 

As described in the previous paper (Ino & Minami, 
1979), the diffraction intensity for a bounded crystal 
can be calculated by either the direct-lattice sum or 
the reciprocal-lattice sum; the former is more 
convenient for a very small crystal. In this paper, the 
intensity profile will be derived from the direct-lattice- 
sum expression, and it will be shown that the compu- 
tation of the intensity profile can be simplified by 
symmetry considerations of the atomic vector set in the 
crystal concerned. 

© 1979 International Union of Crystallography 
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Formula of intensity profile from erystallites 

Let us consider the diffraction intensity from a small 
crystal with a particular size and shape, and designate 
the position vector and the atomic scattering factor 
of the a th  atom in a unit cell as r,~ andf,~ respectively. 
Using a formula derived by Ino & Minami (1979) 
for a very small crystal, the intensity of scattered 
X-rays is expressed as: 

I(b) = (1/V c) Z Z Z L ( b ) A ( b ) ~ ' ( m  + r~= r~ 
m a /3 

x exp[2mS(m + r,~-- r~)], (3) 

where b is the scattering vector, m is the position 
vector of the Bravais-lattice point, V c is the unit-cell 
volume and 7P(r) is the self-convolution of the shape 
function s(r), i.e. 

~ ( r )  = f s(r ' )s(r '  + r)dr', (4) 

1 (inside the crystal boundary), 
s(r) -- 0 (outside the crystal boundary). (5) 

If a polycrystalline sample consists of small 
crystals oriented completely at random, the intensity 
from the sample is given as the average of equation 
(3) over all directions of the scattering vector b. As 
the atomic scattering factors can be regarded as 
spherically symmetric, the intensity from the poly- 
crystal is given by 

belong to the so-called 'vector set' (Buerger, 1950), the 
set of the distance vectors has the symmetry of a space 
group 6 determined by the direct product of G and the 
inversion group, and the rotational part of the space 
group is a Laue group, which is denoted by R. Then the 
set of distance vectors joining the points in the set Pj to 
those in the set P~ can be classified into subsets Dij 1, 
D~j 2 . . . . .  such that elements in each vector_ set are 
equivalent with respect to the symmetry of G, and the 
subset can be expressed as 

Dij k = {m + r!~l m E / 2 ,  s = 1, 2 . . . .  , nijk}, ( 8 )  

where r~k ) and nUk are the equivalent distance vectors 
and their number in a unit cell, respectively. Combina- 
tion of the Ng points in the P~ set with the Nj points 
in the Pj set yields 2NtN ~ distance vectors. However, 
since only nuk vectors are different, the set Duk involves 
some multiplicity. Thus, there is the following relation 
between Ni, Nj, nUk and the multiplicity weight wuk: 

Y WuknUt,= 2NiN j (i :/:j). (9) 
k 

Another relation for the combination of the Ni points 
in the Pi s e t  can also be derived as follows: 

~. w i in i i k  = N 2. (10) 
k 

Thus the summation over the vector m + r~ -- r~ in 
equation (6) can be transformed into 

I(b) = (lIVe) ~ Y ~ f,~(b)f~(b).W" (m + r ~ -  r~) 
m a ~  

× j0 (2nblm + r,~-- r~l), (6) 

where the summation is to be taken over all the set 
of the atomic distance vectors m + r ~ -  r~. The 
summation procedure can be simplified by virtue of the 
crystal symmetry.  

If the crystal possesses the symmetry of a space 
group G, the set of points occupied by atoms can be 
classified into subsets P~, P 2 , ' " ,  such that elements 
of each subset can be transformed one to another by 
the operation of the symmetry group G and they are 
thus equivalent with respect to the symmetry of G. 
Then the P~ set can be expressed, in terms of the 
position vector, as 

P i = { m + r ! t ) l m E . Q , t = l ,  2 . . . .  ,Ni}, (7) 

that m belongs to the whole direct space .Q. Since the 
atomic distance vectors m + r~ - r a in equation (6) 

I(b) = ~ ~ f~(b)fj(b) ~ ~,~uk(b), (11) 
i > j  

n0k 

-(s) I J"tjk(b) = (Vt/Vc)Wuk ~. ~. v[m + r~S..)]j^[2rd~lm + ruk ], UK o 
111 $=1 

(12) 

where 

v(r) = ~ ( r ) / V  t (Vt: the volume of the crystal). (13) 

Since the whole Bravais lattice {m} and the Duk 
set are invariant under the operation of any elements 
Rp (p  = 1, 2 . . . . .  L) included in R, the Dij k set can be 
generated by the operation of the Laue group from the 
particular atomic distance vectors located inside a sub- 
space/20 whose volume is 1/L times that of .O; that is, 

Dtj k = {Rp[m + r0~.~)] Im + r~S~ E O 0, R u E R 

(s = 1, 2, ..., nuk)}. (14) 

-Q0 for 11 Laue groups is listed in Table 1. If the 
number of different vectors of Rp[m + rl~) k] (p  = 1, 2, 

(s)  .... L) is n[m + rijk], the frequency of occurrence of the 
same vector in Rp[m + r!~ k] (p = 1, 2 . . . . .  L) is given by 
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Table 1. Sectorial subspace .Oofor 11 Laue groups 

Laue group I2 o (conventional cell) 

i z >_ 0 (Triclinic) 
2 / m  x > 0, y >_ 0 (Monoclinic; 2nd setting) 

m m m  x > O, y > O, z > 0 (Orthorhombic) 
4 / m  x > O, y > O, z > O~ 

(Tetragonal) 
4 / m m m  x > y >_ O, z >_ 0 f 

m3 x >_y > O , x  > z >_ 0"~ 
(Cubic) 

m 3 m  x >_ y > z > 0 J 
x>_y>_O 

~rn x >_ 2y >_ O ~ 
6 / m  x > y > 0, z > 0 (Hexagonal) 

6 / m m m  x >_ 2y >_ O, z>_ O~ 

L/n[m + W).] Thus equation (12) can be transformed IJK " 

a s  

= WUk X 7. n[m + ~}~lb[m + rlJ ~] 
S = I  m 

x Jo [2nblm + rNl] (15) 

where 
L 

b ( r ) = ( I / L )  ~, v(Rp r); (16) 
p = l  

[m + rl]k ) E ~o] means the summation conditions of m. 
If r~/k is selected as a representative of the vectors r~)k 
(s = 1, 2, ..., nu,), an operator R ~  can be deter- 
mined for an r~,}~ such that 

r~,J, ~ = R!J~rij k + m O) [mrS): a lattice vector]. (17) 

Using the rig k and the RI] ~ one can change the 
summation condition from [m + r~iS~ E -(2 0] t o  

[p(s)l-Z {m + rijk~t..ijk, ~0}" As the function n(r)b(r) 
J0 (2nbl rl) is invariant under the operation of R, one can 
finally obtain: 

I(b) = Z Z f~(b)~(b) Z J"uk(b), (18) 
l>_j k 

= Wij k ~. n(M + riyk) 6 (m + riy,) 
in 

[m + rv, E t2u,1 

×A(2nblm + rukl), 

where OUk is the subspace specified by the point 
symmetry of the position rek such that 

n/Jk 

f2,jk = 1,3 [R!]~]-' f2 o. (19) 
S = I  

The function b(r) in equation (16) can be rewritten as 

(R°: proper rotation belonging to Laue group R) 
because ~P(r) has centrosymmetry and its calculation 
may be simplified if the crystal shape has some 
symmetry. For example, it turns out to be simply 
Y ( r ) / V  t if 7P(r) has spherical symmetry or has some 
symmetry not lower than that of FI. 

Vectors rlJ ~ can be obtained by Buerger's pro- 
cedures in § 2.1.12.5 of International Tables for  X-ray 
Crystallography (IT) (1959) (Buerger, 1959); hence 
operators R !Jk ) (s = 1, 2, . . . ,  ntjk) and rij k can be obtained 
from the column 'coordinates of equivalent positions' in 
§ 4.3 of I T  (1952). wtj k can be obtained by Buerger's 
procedures or from equations (9) and (10). The 
condition for m is given for five types of lattice in Table 
2. The n(r) of a direct vector r can be obtained on 
referring to 'general multiplicity factor of {hkl}' in § 3.5 
of I T  (1952). Thus, the intensity profiles for small 
crystals of any crystal symmetry and any shape can be 
systematically and efficiently calculated by the use of 
equation (18). 

If the atomic distance vectors, m + r~j k in equation 
(18), are numbered in order of increasing magnitude, 
the vth distance, ru(v), will specify a particular k and m 
such that 

Im + rijk I = rij(v). (21) 

In terms of atomic distance rij(v ), equation (18) can be 
rewritten 

I(b) = (V/V c) Y Y f~(b)fj(b) Z Nij(v)J'ot2rd~rij(v)], (22) 
i > _ j  v 

where 

L/2 I 

b ( r l = ( 2 / L )  ~. v(R°r) (20) F 
p = l  R 

Nij(v) = wukn(m + rijk)b(m + rij,). 

The quantity (VtlVc)Nij(v), therefore, means twice the 
number of O" atom pairs having the distance rgj(V) in the 
crystal sample. Since for an infinite crystal b = 1, Nij(v ) 
tends to N~(v)  = wi)kn(m + ru~). Since b < 1, for a 
finite crystal, Niy(v ) is generally less than N~(v). The 
number o f j  atoms in the nearest neighborhood of an i 

Table 2. Conditions limiting possible (mx,my,mz), 
represented by the conventional cell axes in Table 1, 

for  five lattices 

Type of  
lattice Conditions for (m~,my,mz) 

All integers 
r n ~ , m / h a l f  of  the integers and m x + my = integer 
mz: integer 
All integers or all half-odd integers 
Hal f  of  the integers and m x + my + m z = integer 
A third of  the integers and m x - my  - m z = integer 
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atom for an infinite crystal, i.e. the coordination 
number, can be derived from N~(1)  as 

Nm(i - + j ) =  N~j (1)/(sij Ni) 
(eu = 1 for i = j ;  2 for i 4:j). (23) 

On the other hand, the number corresponding to a 
bounded crystal, designated N(i -+ j), is similarly given 
by 

N(i - * j ) =  Nij(1)/(~uN~). (24) 

This number is less than the coordination number. 

Example of application 

7: ( r )  in equation (4), characterizing the effects of size 
and shape on the intensity profile as given by equation 
(18), is a function which may be calculated as the 
volume shared in common by the original crystal and 
the crystal translated by the distance r. For a spherical 
crystal (diameter D), for example, we obtain 

[ 1 - ( g r + ( ~ ) r  3 i f 0 < r < l ,  (25) 
/ ) ( r )  Vs(r) 

t 0 otherwise. 

The relation b(r) = vs(r) holds for any crystal system. 
For a parallelepiped crystal with edges DI,Dz,D 3 
parallel, respectively, to the directions nl,n2,n 3 
(Inkl ---- 1), we have 

v( r )  = vp(x,,x=,x~) 

For a parallelepiped crystal, since Vt /V  ~ = N ,  NyNz, 
b(m) = vp(mx/Nx,my/Ny, mJNz), and n(m) = 1 for m = 
0, and n(m) = 2 for m :~ 0, equation (27) gives exactly 
the same formula as that derived by James. He 
obtained it by the orientational average of the Laue 
function G(b). Since the diffraction intensity Ia(b) for 
the pa expression is equal tof2(b)G(b)  in this case (Ino 
& Minami, 1979), I(b) must be equal tofZ(b) (G(b)) .  
The agreement between his formula and that of the 
present authors is natural in view of these facts. 

For the monatomic b.c.c, crystal, equation (27) gives 
a much simpler formula than that obtained by 
Morozumi & Ritter. It is expressed as the sum of terms 
having T3(m) = vp(mx/M, my/M, mz/M) over a set 
{m,,my, m z} specified by Im3m as shown in Tables 1 
and 2. For a very small crystal, this formula gives pro- 
files considerably different from Morozumi & Ritter's 
calculation. The reason for this discrepancy is probably 
that the total number of atoms considered in their 
formula is M 3 + (M + 1) 3, and not 2M 3 which is 
derived from Vt/V ~ in equation (27). 

As an example of crystals whose basic unit cell 
contains more than one atom, let us consider a high- 
cristobalite crystal. Atoms of high cristobalite, Si and 
O, are placed in the special positions of Fd3m; that is, 
Si: (000), (¼~); O: ( ~ ) ,  (8~83), (8~8a), ( ~ )  (Wyckoff, 
1963). Since the space group of the vector set for this 
crystal is Fm3m, the specifications for equation (18) 
can be obtained as shown in Table 3 where Si and O 
are numbered as 1 and 2. Then the intensity profile is 
expressed as 

_ _ [ ( 1 -  I x l l ) ( 1 -  Ix21)(1 - Ix31)  if Ixkl _< 1 

0 otherwise, 
(26) 

where x ,  = (r. nk)/D k (k = 1,2,3). 
Let us first consider a monatomic crystal consisting 

of atoms located at Bravais-lattice points, such as 
monatomic simple, face-centered and body-centered 
crystals. Since r m = (000), nl~ 1 = 1, Wl~ ~ = 1,J2~l = 
D 0, the intensity profile is given by a quite simple 
formula: 

Vt [ ~ J,,k(b) l(b)= ~ L2(b) k= ' 

+f](b) ,=1 ~ ~22k(b)]" 

+ f2(b)L(b)J"2~,(b) 

(28) 

Since Wll I = 2, ~ '2111  = {xyzIx  ~__ y > z >_ 0}, and 
Wll 2 • 1, D~lZ = {xyzlx  > y > z > 0 or x _<y _< z < 0}, 
J " ~ l  and ~2"al 2 for S i -S i  can be expressed as 

I(b) = (Vt/V~)f2(b) Z n(m)f)(m)jo(2z&lml), (27) 
m ~ o  

where O0 and the condition of m are given in Tables 1 
and 2. For a monatomic f.c.c, crystal with the shape of 
a cube as treated by Germer & White, since Vt /V  c = N, 

2 1/2 z + mz ) /D] and n(mx, my,mz) is b(m) = Vs[a(m 2 + my 
nc(mxm/nz) given on the m3m row of p. 32 of I T  
(1952), equation (27) is identical to the formula of 
Germer & White. Although they derived e, as an 
approximate function through integrals under a par- 
ticular geometrical consideration, e, is nothing but v s, 
which has been derived straightforwardly by 'the 
random-shift treatment'  (Ino & Minami, 1979). 

~'lxl(b) = 2 Z Z Z nc(m~,my, mz)~)(mx,my, mz) 
rn x>_rny>rn z >O 

2 1/2 2+ m~) ], (29) × jo[27~ba(m 2 + my 

J"llz(b) = ~, Y Z nc(m x + ~, my + ¼, m z + ¼) 
m x >  my>_ m,>_ ---~ 

or 

m < m y < m  <--~ x -  -- z -  

x V(mx + ¼, mr + ¼, mz + 9 jo{2zcba[(mx 

+ (my + ¼)z + (m z + ¼)ZlUZ }. 

+ ~)~ 

(30) 
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Similarly, ~'211 for S i -O ,  and ~'221 and '-~'222 for O - O  
can be obtained from Table 3. The intensities for the 
cubic crystal with edges parallel to the crystal axes 
were calculated from equation (28) with f;(x,y,z) = 
vp(x/D,y/D,z/D) derived from equation (26). Fig. 1 
shows the plots of the function I(b)/[Vt/V c) 
~, l Nifi2(b)] versus 2z~a for high-cristobalite crystals of 
cubic shape containing 1, 8, 27, 64 and 125 unit cells. 
The positions of the first few powder reflections are 
shown at the bottom for comparison. 

For a diamond crystal, since C atoms are put in the 
positions identical in symmetry with Si atoms in high- 
cristobalite, the intensity can be given by (Vt/Vc)f2(b) 
Z~,=l~'11t,(b) in equation (28). After (m~my, mz) in 
~P'~11, equation (29), has been replaced by (p/4,q/4,s/4) 
(p,q,s: positive integers; p _> q > s > 0) and (m~ + ¼, my 

Table 3. Specification for  the vector set o f  a high- 
cristobalite crystal 

Atom 
pairs (ijk) ruk nuk wij k R}])k (s = 1 ..... nuk)* 

Si--Si (111) (000) 1 2 (xyz) 
(112) (~-~) 2 1 (xyz), (YcpP.) 

O--Si (211) (~-~) 8 2 (xyz), (x~.), (YcyP.), (Yc~z), 
(.~p2), (~yz), (xpz), (xy~.) 

O--O (221) (000) 1 4 (xyz) 
(222) (N0) 6 2 (xyz), (zxy), (yzx), 

(xpz), (zx0), (y, zx) 

* The symbol for the operator R is just the vector formed by the 
action of the operator R on the vector (xyz) (Jones's faithful 
symbol). For example, (xyz) and (2,92) mean operators l and i 
respectively. 

L 

L/ 

(331) (422) (531) (111) (220) (222) 

lO 20 30 40 2r~ba 
Fig. 1. The plots of the function I(b)/[(VL/Vc) Z2=lNlf/2(b)] for 

high-cristobalite crystals with cubic shape. 

+ ¼, m z + ¼) in J"112, equation (30), has been replaced 
by (p/4,q/4,s/4) or ( -p /4 , -q /4 , - s / 4 ) ,  the intensity is 
expressed simply in terms of (pqs) as 

2[ V, ) p,q,s)b(p_,q s ] 
I ( b ) =  \ Vc f2(b)p=oZ q=o ~ s=o ~ n ' (  \44'4J 

x jo [ rcba(p ~ + q2 + s2)1/2/2]. (31) 

where 

{ nc(p,q,s): p,q,s for all even and 
p + q + s = 4 x integer, 

n'(p,q,s) = nc(p,q,s)/2: p,q,s for all odd, 
0: otherwise. (32) 

For a cubic shape, the intensity profiles were computed 
and compared with the curves given in the paper of 
Tiensuu et al. The agreement is seemingly good. For a 
spherical crystal (diameter D), equations (31) and (32) 
may be compared with Ergun's formula. Although 
b(p/4,q/4,s/4) = vp[a(p 2 + q2 + S2) l /2 /4D]  is equal to e 
in Ergun's formula and the summation condition of 
(p,q,s) in equation (31) is the same as that in his 
formula, n'(p,q,s) in equation (32) does not agree with 
his n value for p,q,s all odd. 

Let us consider the coordination number for a 
high-cristobalite crystal and the dependence of 
N(i -* j )  on the size of the crystal with a cubic 
shape. By the use of equation (24), these numbers for 
N(Si -* Si), N(Si --, O), N(O --, Si) and N(O --, O) were 
calculated and are given in Table 4. The radial 
distribution functions (RDF's)  for this crystal, 
4z~rED(r), are illustrated in Fig. 2 where it is supposed 
that the constituent atom has an atomic scattering 
factor propo?tional to its atomic number and that the 
crystal has the Debye temperature factor exp[--(2z~bA)2/ 
2] (A = 0.2 A). As shown in Fig. 2, even for a very 
small crystallite consisting of several unit cells, one 
can detect the peaks corresponding to the nearest- 
neighbour distances r (O-Si) ,  r(O--O), r(Si-Si)  in 
the RD curve. However, as can be seen from Table 4, 
the apparent coordination numbers N(i -* j )  derived 
from the area under the peaks in the RDF are much 
less than the true one and vary with the size of the 
crystal. Hence on the estimation of the coordination 
number in a sample using the RDF obtained from the 

Table 4. N(i --, j )  o f  a high-cristobalite crystal with 
cubic shape 

Number 
of cells N(O --, Si) N(Si --, O) N(O --, O) N(Si --, Si) 

1 1.340 2.680 3.375 1.688 
8 1.648 3.296 4.594 2.680 

27 1.760 3.520 5.042 3.081 
64 1.830 3.660 5.273 3.296 

125 1.854 3- 708 5-415 3-430 
2 4 6 4 
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diffraction intensity, even if the sample is assumed to be 
composed of small crystallites so isolated that the 
interference among them may be neglected, the z3 
function should be taken into account as the correction 
factor. 

! 

~ int ini te 
~ , crystat  

I 
.--4-' I I I I  f 

I | i i I 
• i i 

~> I" ":', I ~ , ~ '64cel ts 
aJ f: "l t.. t I : 

" - -  I ; A ' . l  I " ; I I : 
:IX; 

r l  \ ,  - : ++x d - . .  
u_" Sr-O 0 - 0  S]-S~" " t i, ,'-. - A "  " 8cetts 

~ "N../ 

0 2 4 6 8 r (A)  

Pig. 2. The radia l  d is t r ibut ion funct ion  4 + 2 D ( p )  for high- 
cdstobaJite crystals. 
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Abstract Introduction 

X-ray intensity measurements for a single crystal of 
sodium fluoride obtained at four wavelengths by 
Howard & Jones [Acta Cryst. (1977), A33, 776-783] 
have been re-analysed using both the Cooper-Rouse 
and Becker-Coppens extinction formalisms in order to 
study the wavelength dependence of the extinction in 
this crystal, since the original analysis was unable to 
account for the wavelength dependence of the inten- 
sifies of the strong reflections. The results indicate that 
the crystal is intermediate between type I and type II 
in nature and are consistent with the wavelength 
dependence predicted by the theories, although the 
extinction is not large enough at the shorter wave- 
lengths to provide a useful test of the validity of the 
theoretical wavelength dependence. The analysis also 
demonstrates some of the possible consequences of the 
use of unbalanced weighting schemes and of inappro- 
priate models for the scattering factors. 
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In a recent study of the electron distribution in sodium 
fluoride, Howard & Jones (1977) carried out a series of 
accurate X-ray diffraction measurements on a single 
crystal of sodium fluoride at four different wavelengths, 
using Ag Kn, Mo Kn, Cu K¢t and Co Kn radiations. 
These authors analysed their results using six sets of 
theoretical scattering factors and concluded that the 
best model for the electron distribution in sodium 
fluoride was given by the model 2 scattering factors of 
Aikala & Mansikka (1972) which take into account the 
overlap of the wave functions within the crystal environ- 
ment as well as incorporating a contraction of the 2p 
orbital of the F-  ion compared with that in the free ion 
(the AM2 model). 

In analysing their results Howard & Jones included a 
correction for extinction using the Zachariasen (1967) 
model, but also considered possible amendment of the 
angle dependence in line with that predicted by Becker 
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